Journal of Thermal Analysis and Calorimetry, Vol. 65 (2001) 451–455

PHASE RELATIONS IN THE SUBSOLIDUS AREA OF THE CoV₂O₆-CoMoO₄-CoO SUBSYSTEM INCLUDED BY THE TERNARY CoO-V₂O₅-MoO₃ SYSTEM

M. Kurzawa and M. Bosacka

Institute of Chemistry and Environment Protection, Technical University of Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland

Abstract

The phase diagram of CoV_2O_6 –CoMoO₄–CoO system in subsolidus area was investigated by DTA and XRD methods. It was shown that this area consisted of five subsidiary systems in which there existed three solid phases. The melting temperatures of these systems were also determined.

Keywords: cobalt(II) vanadato-molybdate, DTA, phase diagram, XRD

Introduction

The hitherto published studies on the reactivity of $Co_3V_2O_8$ towards $CoMoO_4$ in the solid state have shown that the system components react with each other to form a previously unknown phase of Co₂₅VMoO₈ that is isostructural with Mg₂₅VMoO₈ [1, 2]. The phase relations occurring in the $Co_3V_2O_8$ -CoMoO₄ system are already known [2]. This system is an actual section of the ternary CoO-V2O5-MoO3 system. Phase equilibria within the V₂O₅-MoO₃, CoO-V₂O₅ and CoO-MoO₃ external walls as well as the properties and structure of compounds existing in these binary systems are extensively described in literature [3–7]. Thus, the phase diagram of the CoO–MoO₃ system is known [3, 4]. In this system only one compound is formed, namely CoMoO₄. Its melting temperature is 1180°C [5], but our investigations have shown that $CoMoO_4$ melts at 1110±10°C. The phase relations in the CoO-V₂O₅ system are also well known. In this system there exist three compounds, all of them melting incongruently. The melting temperature of cobalt vanadates amount respectively to $CoV_2O_6 - 740^{\circ}C$ [8], $Co_2V_2O_7 - 830^{\circ}C$ [8], $Co_3V_2O_8 - 740^{\circ}C$ [8], $Co_3V_2O_8 -$ 1216°C [9]. The ternary CoO-V₂O₅-MoO₃ system was comprehensively investigated as well with respect to the phase equilibria and properties of the phases present in this system [3]. It was shown that in the CoO-V₂O₅-MoO₃ system there exists a solid solution MoO_3 in CoV_2O_6 exhibiting the brannerite structure type [3]. The diagram of the $CoO-V_2O_5-MoO_3$ system has been constructed, except for the $CoV_2O_6-CoMoO_4-CoO$ section. The area of this section was not discussed in the above-mentioned work in detail [3]. Our aim was, therefore, to investigate the phase equilibria in the subsolidus area of

1418–2874/2001/ \$ 5.00 © 2001 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht the CoV_2O_6 -CoMoO₄-CoO system, in which a compound of $Co_{2.5}VMoO_8$ is formed in the $Co_3V_2O_8$ -CoMoO₄ section [1, 2].

Experimental

18 samples were prepared from CoCO₃ (Aldrich, Germany), V₂O₅ (POCh, Gliwice) and MoO₃ (POCh, Gliwice) i.e., their composition having been chosen for the sake of phase relationships investigation of the CoV2O6-CoMoO4-CoO system in the solid state. Reactants were weighed in appropriate amounts, homogenised, shaped into pastilles, and then heated in a sylite furnace, in air. On each heating stage the pastilles were ground again, were examined by using DTA method and their content was determined by means of XRD method. Afterwards, the samples were re-shaped into pastilles and heated again. This procedure was continued till equilibrium state was reached. Two identical results obtained were taken as an indication of the equilibrium state having been established and then the heating of samples was finished. The conditions of calcination were different depending on the sample composition. After the last heating stage all samples were cooled for 12 h to ambient temperature and then DTA and XRD were examined. Compositions of the samples thus prepared were determined by using XRD method (diffractometer DRON-3, CoK_a radiation, Fe filter) and on the data included in PDF cards [10], and found in literature [2, 3, 11]. The XRD patterns were handled by means of the programs from DHN/PDF package (Program Package for Powder Diffraction).

With the use of the TA Instruments STD 2960 apparatus the DTA examinations of the samples were performed. These measurements were carried out in air, with the use of platinum crucibles at a heating rate of 10° C min⁻¹.

Results and discussion

In the face of discrepancies in literature data we decided to start verifying the melting temperature of all cobalt vanadates and cobalt molybdates. It was found that both the melting temperature and the temperature of polymorphic transition of CoV_2O_6 were

Fig. 1 DTA curve of $Co_2V_2O_7$

in accordance with the literature data [8] i.e. cobalt metavanadate melts at 740°C, whereas the polymorphic transition takes place at 662°C. On the other hand, $Co_2V_2O_7$ melts at 870°C (Fig. 1) according to our research results, i.e. by 40° higher than other papers reported [8]. We have also found out that the melting temperature of $Co_3V_2O_8$ is equal to 1120°C, while of $CoMoO_4$ amounts to 1110°C.

No.	Compositions of initial mixtures/mol%			Condition of	
	CoO	MoO ₃	V ₂ O ₅	calcination	Phase detected
1	65	30	5	600°C (24 h)	Co _{2.5} VMoO ₈ ,
2	80	15	5	+650°C (24 h)	CoMoO ₄ , CoO
3	70	20	10	+700°C (24 h) +750°C (24 h) +900°C (24 h)	Co _{2.5} VMoO ₈ , CoO
4	85	10	5		
5	75	10	15	+950°C (24 h)	Co _{2.5} VMoO ₈ ,
6	85	5	10	+1000°C (24 h)	$Co_3V_2O_8$, CoO
7	68	5	27	600°C (24 h) +650°C (24 h)	Co _{2.5} VMoO ₈ ,
8	67	13	20	+700°C (24 h) +750°C (24 h)	Co ₃ V ₂ O ₇ , Co ₂ V ₂ O ₇
9	65	13.5	21.5	+800°C (24 h) +810°C (24 h)	$\begin{array}{c} Co_{2.5}VMoO_8,\\ Co_2V_2O_7 \end{array}$
10	62.6	16.5	21	(0,0,0,0,0,0,0,1)	C INCO
11	60	25	15	$+650^{\circ}C (24 \text{ h})$	$Co_{2.5}VMoO_8,$ CoMoO4, Co2V2O7
12	58	30	12	+700°C (24 h)	00111004, 002, 207
13	55	35	10	+750°C (48 h) +770°C (48 h)	CoMoO ₄ ,
14	60	20	20	(40 II)	$Co_2V_2O_7$
15	52.5	30	17.5	550°C (24 h)	
16	55	20	25	+600°C (24 h) +600°C (24 h)	CoMoO4, Co ₂ V ₂ O ₇ , CoV ₂ O ₆
17	55	10	35	+650°C (24 h)	
18	60	5	35	+650°C (48 h) +680°C (48 h)	

 Table 1 The compositions of initial mixtures, calcination and XRD results for samples after the final heating cycle

Composition of initial mixtures, conditions of preparation and XRD results for all samples after the final of stage heating are presented in Table 1. Figure 2 shows a scheme for the fragment CoV_2O_6 -CoMoO₄-CoO of the ternary system $CoO-V_2O_5$ -MoO₃ in subsolidus area. This phase diagram was determined on the basis of XRD results, DTA curves and reported data [2, 4, 5]. It follows from the phase diagram that in the CoV_2O_6 -CoMoO₄-CoO system five subsidiary partial systems can be separated, each of them containing three solid coexisting phases. These are the following partial systems:

 $CoV_{2}O_{6}-CoMoO_{4}-Co_{2}V_{2}O_{7}\\Co_{2}V_{2}O_{7}-CoMoO_{4}-Co_{2.5}VMoO_{8}\\Co_{2.5}VMoO_{8}-Co_{2}V_{2}O_{7}-Co_{3}V_{2}O_{8}\\Co_{3}V_{2}O_{8}-Co_{2.5}VMoO_{8}-CoO\\CoO-Co_{2.5}VMoO_{8}-CoMoO_{4}\\$

Fig. 2 Subsolidus portion of the phase diagram of the CoV₂O₆–CoMoO₄–CoO systems divided into subdiagrams. Open circles represent the composition of the studied samples

In Fig. 2 there are marked the melting temperatures for the individual areas of partial subsidiary systems that were determined on the basis of onset temperatures of DTA effects corresponding to the samples, respectively.

References

- 1 M. Kurzawa, VIth European Conference on Solid State Chemistry, Zürich 1997, Book of Abstract, p. PB108.
- 2 M. Kurzawa and M. Bosacka, J. Therm. Anal. Cal., 56 (1999) 211.
- 3 K. Mocała, J. Ziółkowski and L. Dziembaj, J. Solid State Chem., 56 (1985) 84.
- 4 J. Ziółkowski, L. Dziembaj, T. Machej and S. Ostrągowski, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 10 (1978) 775.
- 5 T. M. Januszkiewicz, W. M. Zhukowski and W. M. Ustnicew, Zh. Neorg. Khim., 21 (1976) 771.
- 6 J. C. Pedregosa, E. J. Baram and P. J. Aymonino, Z. Anorg. Allg. Chem., 404 (1974) 308.
- 7 A. Cosalot and P. Hagenmuller, J. Inorg. Nukl. Chem., 31 (1969) 3049.

- 8 G. M. Clark and A. N. Pick, J. Thermal Anal., 7 (1975) 289.
- 9 A. A. Fotiev, W. K. Trunov and W. D. Zhuravlev, 'Vanadates of divalent metals', Nauka, Moskva 1985, p. 67.
- 10 Joint Committee of Powder Diffraction File: 5–508, 9–404, 25–1434, 34–187, 37–352, 38–90, 38–193.
- 11 L. L. Suart, W. D. Zhuravlev and Yu. A. Welikodny, Zh. Neorg. Khim., 43 (1998) 520.